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Abstract

" The objectives of this study are to characterize apparent
background motion as a function of observer-satellite orbit and
sighting geometry and then to compare the effectiveness of signal
processing tiiters in minimizing background motion effects on
target  detection. For many applications, complex algorithms
cannot be realized economically. so simple yet effective algorithms
must be developed to do the job. In this study both ideal and
optimum third-order temporal recursive filters were synthesized
and  thetr simulated signal-to-noise ratio performance compared
with that obtained by simple temporal differencing (first- through
fourth-order). Our resuits indicate that for the same amount of
memory, compared to the differencing filters. significant SNR
performance improvement can be achieved with optimum recursive
filters ar the cost of a modest increase in filter complexity. The
study is particularly pertinent to the detection by a staring mosaic
sensor of aircraft from satellites in high (> 1000 km) orbits. They
are typically dim targets flying close to a structured background
(the carth surfuce). and the background clutter tends to dominate
the detection problem.

I. Introduction

Staring mosaic sensors are effective in minimizing possible
“noise” from background spatial structure by taking differences
between successive trames of data and thereby eliminating features
which have spatial but not temporal variation. This is commonly
referred to as background subtraction. Thus in space surveillance,
the star background can be climinated by an inertially stabilized
staring sensor while “targets” (satellites which move through the
field of view) are detected as streaks. Detection of objects against
an carth background is more difficult because the staring feature
cannot be ideally achieved. In any orbit except synchronous
equatorial, an carth-looking sensor can effect perfect staring at
only one point in the FOV because of both satellite motion and
carth motion. All other background points in the FOV will appear
to drift. and this motion causes ““noise™ signals if the background
has appreciable spatial structure to simulate one or more tem-
porally moving targets. Even in a synchronous equatorial orbit.,
attitude drif't of the sensor is of concern in establishing ideal staring
operation. The “expansion™ and “contraction™ of the FOV,
depending on the satellite zenith angle. is shown in Fig. 1 (carth
curvature over the satellite FOV is ignored).

A critical problem in the design of signal processing systems
for large staring mosaic (detector array) sensors is the synthesis of
algorithms to detect dim targets against earth backgrounds in the
presence of several noise sources. Significant noise components are
background drift. sensor jitter, background shot noise, detector
crosstalk, system readout, and multiplexer (MUX) noises. In many
applications the implementable signal processing algorithms are
limited by the large number of detector channels required for
adequate spatial sampling resolution and coverage. Consequently,
filtering algorithms must be simple and must provide, under given
constraints on memory and computing capacity. reliable detection
at low input signal-to-noise ratios against severe and varying
background conditions. The overall performance of a dim target
detection system is limited by the amount of SNR enhancement
which can be achieved by a filter applied to the raw focal plane
data. Because of the large amount of data generated by a mosaic
sensor. a primary goal of each detection algorithm block is to
reduce the dimensionality of the problem such that the final step
van be a simple threshold-type classification. To first order, sensor
transfer characteristics are linear as shown in Fig. 2. ldeal and
optimum filters can be synthesized directly from linear models of
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the sensor and its inputs. In the context of this report, an “ideal™
filter is one that is not constrained to be realizable while an
“optimum” filter must be realizable within the constraints of a
given filter configuration. This paper will include:

1. Discussion of the expected earth background drift
velocities that a staring sensor in a low earth orbit (LEO)
will encounter. and characterization of such drift in
terms of orbital and earth viewing parameters.
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o3 $ R ! o4 .
O# O%?‘?:Q.',é“‘él

—




Presentation of simple temporal filtering algorithms, and
i comparative analysis of the effectiveness of various
signal  processing  algorithms in rejecting background
clutter noise.

oy

Fhe interrelationship between blur circle size and the
consequent theoretical limit in achievable SNR.

Fhie results sununarized in this paper were obtained under a
Rockwell IR&D effort and are explained in more detail in
Reterence 1. Some carlier results obtained under this same IR&D
etfort were reported in Reference 2 and also are included in this
paper.

11 Characterization of Earth Background Drift

It we ignore the earth's rotation. the apparent angular motion
of & ground point on the edge of the sensor FOV is given by

s
w =
T ro

.‘(AFOC n

where, referring to Fig. 3a,
V5 is the sensor linc.ur velocity in the satellite orbit plane
T} is the vector to the point of interest on the edge of FOV
To is the vector to the FOV stable point on the ground
Tge 18 a vector equal in magnitude to Ar

A similar derivation is applicable to the study of apparent
motion of other points on the edge of the sensor FOV. The net
motion along the xyz axes with the x axis parallel to the satellite
velocity in the orbital plane can be computed by resolving the T)
vector into three components (viz.. Tyx Tyy and Ty,) and then
taking the vector cross-product of each with the satellite velocity
vector V. Fig. 3b illustrates such a procedure. Depending on the
position of the point of interest (target) in the sensor FOV, it can
have simple linear motion or combined linear and rotational
motion about the FOV center. For small FOV's, the magnitude of
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Fig. 3. Background Motion Calculation Geomesry

the motion of any point in the sensor FOV is linearly proportional
to its distance from the FOV center, the stable point on the ground.
Thus, results shown in this study for the perimeter of a square
FOV can be extrapolated to larger FOV’s or to circular FOV's.

System parameters used to study background motion depend-
ence on sighting geometry are shown in Table 1. For the first part
of the study to determine the dependence of drift parameters on
satellite orbit altitude and zenith angle, three orbit altitudes—
400 n.mi. (741.2km), 1000 n.mi. (1853 km), and 3440 n.mi.
(6374 km)-were picked and for each orbital altitude, four in-planc
sighting geometries were chosen with satellite zenith angles of 300,
459, 600 and 80°.

Table 1. System Parameters to Study Background Motion
Dependence on Sighting Geomerry

Parameter
Circular satellite orbit
Orbit inclination
Orbit altitude
Satellite orbit period range

Characteristics

00 (equatorial}
254 km (137 n.mi.} - 6374 km (3440 n.mi.}
1.495 hr - 4,00 hr

Satellite zenith angle WRT local 30-80°
vertical of earth aimpoint
Earth aimpoint/center of FOV Latitude range = 0-19°
Longitude range = 3.6.60.50
Longitude at apoges 0°
Argument of perigee Q°
12 :oul plav;u angle .
rd F1 .7

ST Q760 |  sauare FOV

Sighting geometry Along orbital plane forward of direction of

motion; 602 to side in plane parpendicular
to arbit plane

There are two more meaningful measures of angular drift
other than the maximum angular drift. 1TO| .. the latter
occurring at one or two of the four comers of a square or
rectangular FOV. Using linear interpolation it is easy to derive the
average drift (average of eight points) on the circumference of a
circular FOV with radius 1o, |TOJ e, circumscribed inside the
square FOV as in Fig. 3¢. Given the value of |TO| 1. it is simple to
derive! the value of the second important drift averaged over the
area of a circular FOV of radius r, to be

'T—0|F0V=—§_ (ﬁ!re )

The values of maximum angular and linear background drift
parameters have been plotted against various pertinent orbital
parameters. Fig. 4 shows the magnitude of the maximum total
angular drift [TO|max (arc-sec/sec) as a function of the satellite
orbit altitude (Fig. 4a) and zenith angle (Fig. 4b). The maximum
magnitude of the angular drift usually occurs at one or two of the
four corners of a rectangular FOV and has. for constant zenith
angles, a somewhat inverse relationship to orbit altitude. For
constant satellite altitude, the magnitude of the maximum angular
drift |TO max increases markedly with higher satellite zenith
angle, although the steepest increase takes place for satellite zenith
angles greater than 609, as shown in Fig. 4b.

Fig. 5 shows the various meaningful measures of angular drift
and their dependence on satellite orbit altitude, Two sets of curves
are plotted for the same satellite zenith angle (viz., 60°). One set
refers to line of sight (LOS) 60° forward looking in the orbital
plane and the other set refers to the LOS looking 600 to the side at
right angles to the orbital plane. Typically, the angular drift rate
looking sideways is significantly less than looking along the orbital
plane for small (<1000 km) satellite orbit altitudes, Average drift
magnitude on the circumference of a circular FOV is roughly 70+
of the maximum drift value. It has been analytically shown that
the angular drift averaged over the area of a circular FOV s 23
that of the angular drift on the circumference of the same FOV.
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Aversge of Total Drift Magnitude Over 8 Points The variation of the apparent background linear drift velocity
on Circumference of 1.50° Circular FOV: orthogonal to LOS with orbital altitude is less than one might

. . X . expect because angular drift has an inverse relationship with slant
A'""'e:;?"‘ Orift M".mm::r 1'50'0 Circular FOV: range for the same satellite zenith angle. This is illustrated by the
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1. Performance of Various Digital Filters
n Suppressing Background Clutter

One dpproach to handling background motion is to estimate
this motion and then compensate the received image data so as to
remove it. The algorithms required to perform high accuracy image
motion compensation are not simple ¢nough to be practically
applicable to large array staring mosaic sensors. Another approach
presented hiere, s to use SNR enhancement filters that exhibit
sufficient performance in spite of excessive background motion.
Given the target signal magnitude of Fig. 7 and sampled back-
ground clutter of Fig. &. it is possible to use a high band pass filter
to reject the low-frequency background clutter and retain the
high-frequency components of signal magnitude, thus significantly
improving the input SNR throughput. For detecting point source
targets moving against structured background, we use primarily the
classical detection tie.. pre-whitened matched) filter. This filter
can be written as Hyjw) = S(-j(.J)/|N(j<»))|2 where S(jw) is the
signal and N(jw) the additive noise. This filter optimizes the peak
signal to ms noise ratio (SNR) and is typically the best when SNR
gain is the overriding consideration. In Reference 2 it has been
shown that, as a least-square estimator, the realizable filter HaGw),
as an approximation to the ideal filter Hy(jw). is optimum with an
acceptable defay @ if the performance parameter given by

P= 7 [RGw)| > [Hiiw)- @i Hagw)| 2de  3)

has been minimized, where R(jw) is the Fourier transform of the
total filter input. The e¢xamples of the optimum linear filter
approximations presented in later sections were obtained by
minimizing this performance parameter.
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Because of the nature of the multiplexed data stream out of a
mosaic sensor. the required linear filters are sampled-data rather
than continuous. Hence. account must be taken of fold-over or
aliasing and the bandwidth limit specified by the sampling
theorem.

in the simplest approach to temporal filtering, one matches
the target detector cell dwell time to the detector integration time
and the sampling period and then performs some order of temporal
differencing. A slightly more compticated approach is to employ a
temporal recursive filter and sample with a period less than or

4

equal to the target cell dwell time. As will be shown later, this
second approach offers greater system flexibility and performance
at a slight increase in complexity. )

To compare the performance of various filters as applied to
the suppression of background clutter, a computer program was
used to simulate a set of fixed (first through fourth) dnfcrcn_cc
filters as well as to optimize a set of third-order recursive filtc{s for
six different drift rates. To show that the fixed difference hlh.:rs
are special cases of optimum filters of the same order. we start wn.h
a temporal filter with a third-order recursive structure as .shown in
Fig. 9. The filter is assumed to have a transfer function H(Z)
expressed in the Z domain as,

Z+ag 2242 EgwngZ+wNgt

X 4)
Ztapy " 7242 EprpZ+wNpT

H(Z) =

Z+Ky Z2+K4Z+Kg
Z +K, Z-+K3Z+Ksg

By setting ®g=Ka=-1, =05 Kg4=-2 ani wnQ-=
Kg =1, and all other coefficients equal to zero. H(Z; of F\g.‘)
becomes a third differencing filter H(Z) = (Z-1)3/Z3) which is a
concatenation of three first difference filters (vis.. (Z-1)/Z].

input
b b X

Ky K2

A-38+3C-D Third Difference

2. 24 %2 224 K42+ Kg
HiZ)= o= = e = =
A B ¢ o Z+Ky 22+K32+K5

Third Differencing Fitter
Operating on Four Successive General Third-Order Recursive Filter

Data Points (Time Samples) Z-Domain Transfer Function
Third
Ki=ap=0 Difference
K3=2 fprp =0;Kg ““’sz =0 Flltera
K2=ﬂo=-1,'K4=ZfowN0’—2;K6=UN02='I .(Z-IL
23

Alternate
HiZ) - <£f “Q) <i’2 $ownoZ+ “’N'O_2>_ Expression for

Third-Order
Zra, 22+2¢ p¥NpZ+ “‘sz Recursive Filter

Fig. 9. General Third-Order Recursive Temporal Filters

Letting all of the filter coefficients. o 0 £0-“NO. ap. ¢
and “Np of Equation 4 vary, a set of six optimum third-order
recursive filters was synthesized to best match the ideal fitter
transfer functions according to the criterion set by Equation 3. The
coefficients of these optimum third-order recursive filters which
depend both on background drift rate and sampling interval are
shown in Tables 2 and 3.
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Tuble 2. Coefficients fur Optimum Recursive Filters-Sampling
at Intervals of 1/2 the Target Cell Dweil Time

ag wND | @p gp
-1.086 0.756 | 0.005 | 0.091
-1.116 1.758 | 0.279 | 0.146
-1.001 -2.623 | 0.253 | 0.077
-1.002 -1.379 |-0.193 | -0.367
-0.986 0.994 | -0.789 | 0.678
0.205 1.015 | 0.370 | 0.450

w"’

0.823
0.842
0824
0.759
0.774
-0.608

Table 3 Coefficients for Optimum Recursive Filters - Sampling
a:i the Target Ceil Dwell Time

o9 | %o

-0.996 | -1.284
-1.000 | -0.854
0.999 | -0.942
-1.003 | -1.004
0.711 | -1.000
-1.027 | -1.002

wNp | ap Ep

0.287 | 0.802 | 0.768
1.127 | 0.680 | 0.656
0.884 | 0.414 | 0.464
1.23 | 0.462 [ 0.156
0.963 | 0.186 | 0.448
1.065 | 0.436 | 0.920

w"p

0.876
0.7114
0.648
0.704
0.706

Some of the limiting assumptions used for this study:

A stochastic quasi-linear model of the detector process is
adequate.

Noise and background are additive, uncorrefated, and
generated by a Gaussian random process with a given
power spectral density (PSD).

Target is additive.

Sensor and filter responses are linear.

Background and target velocities are constant with a
fixed detector crossing geometry.

System parameters used in our study are shown in Table 4.

Fig. 7- shows the sampled signal magnitude (sampling interval
of 1 sec) and noise magnitude spectra up to a frequency range of
2Hz and clearly shows the effect of sampling frequency on

Table 4. Assumed System Parameters for Filter Design
to Suppress Background Motion Effects

Parameter Charscteristics

3,600 km
Paint source
Velocity aligned with footprint side; 200 m/sec
1/t PSO; Gaussian PDF; angular drift velocity Vg:
1.2 uR/S to 7.3 uR/S; rotational drift about
FOV center neglected
Circular clear apsrture diffraction-dimited biur circle
calculotion bassd on X\ = 8.7 um
Aperture-to-focel plane 50%; spectral filter 26%
Square ares > blur circle; uniform responsivity
AMS shot/RMS beckground = 3.69 x 103
White Gaussisn
No jitter, system noise, crosstalk, MUX noise
1-s0c = 1/2 target coll dwell time: first set of
tost cames
2-s0c = target coll dwell time: second set of
tost cases
Varied jointly with respect to the cell dwell time
Square footprint with 400 m side
0.238 0t V) = 1.2 uR/S
OOSZMVVHM!IS

Sensor altitude
Target

Bsckground

Optics

Transmissivity
Detectors
Shot noise

Other noiss
Sample time/integration time

Sempling and integration time
FOV

Input pesk signel to o of
totsl noise

resulting spectra. Fig. 8 is especially useful as it also illustrates the
effect of background motion on background clutter spectra and
hence, the total noise spectra. Fig. 8 is indeed a super-position of
six cases for six background drift rates (7.3u r/s to 1.2 ut/s in
equal decrement interval).

Fig. 10 is the impulse response of a first difference filter. The
time of the impulse has been arbitrarily set at 50 sec. Note that due
to the property of first difference, we obtain two samples from an
unblurred point target, of equal but opposite magnitude and set
apart by the sampling interval. The impulse responses are invariant
with respect to the background drift rates but do depend on the
sampling interval. Note that for a fixed-difference filter, the
number of *‘positive’ and “negative™ samples associated with the
magnitude response is one higher than the order of the filter (2 for
a first difference filter in Fig. 10, for example). All of the
preceding statements can be understood by examining the value of
the coefficients in the “tree diagram” of Fig. 9.
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Fig. 11 shows the impulse response for the optimum third-
order recursive filter which was derived from the corresponding
ideal filter. It should be obvious that transversal filter approxi-
mations to these characteristics would require many more than just
three delay stages. The impulse responses for the third-order
optimum recursive filters vary with both the sampling interval and
the background drift rate since the filter assumes different
coefficient values (given in Tables 2 and 3). depending on the
sampling interval and the background drift rates. Notice also that
while the ideal (non-realizable) filter is non-causal, the optimum
recursive filter being realizable has a causal impulse response. Also,
the damping of the impulse response depends on the background
motion. For the optimum recursive filters a sharper frequency
domain cutoff and, hence, smaller damping coefficient is required
for high background drift rate.

Fig. 12 and 13 show the peak normalized magnitude respon-
ses of the various fixed-difference, ideal, and third-order optimum
recursive filters to a frequency range of 1 Hz. These figures
illustrate the advantages of optimum recursive over fixed-difference

e
10 20 30 40 5 60 70 80
Time (Seconds)

Fig. 11. Optimum Third-Order Recursive Filter Impulse Responge
(Vy = 7.3 urfs) 1-Second Sempling
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Fig. 13. Magnitude Responses of Third-Order Optimum Recursive and Fixed
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filters of first through fourth orders. For a sampling time interval
of 1sec. (over sampled case) Fig. 12 shows that for high
background drift rate (7.3 urad/sec), the third-order recursive
filter has a greater background clutter rejection than the first- and
second-difference filters but has less background rejection capabil-
ity than the fourth-difference filter. For lower background drift
rates (e.g.. 1.2 urad/sec) in the oversampled case (Fig. 12), the
third-order recursive filter, optimized for Vi = 1.2 urad/sec, offers
a broader passband than the second. third-, and fourth-difference
filters. This feature allows for integration against the white shot
noise which determines the SNR over the background drift effects
for low background motion. When sampling interval coincides with
target cell dwell time as in Fig. 3. the advantage of recursive filters
over fixed-difference filters is again observed. The magnitude
response curves of the two third-order recursive filters for the
extreme values of the background drift rates span the magnitude
response curves for the second-, third-, and fourth-difference
filters. This implies that by adaptive adjustment of its coefficient
values in response to the existing background drift rate. the
optimum recursive filter can indeed perform superior to the
second-. third-, and fourth-difference filters in rejecting back-
ground clutter.

in Fig. 14 and 15 are plotted the maximum peak signal to rms

noise versus the background drift rates of interest as output by the
various fixed-difference. ideal. and optimum recursive filters.
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Fig. 15. Effectiveness of Various Filters in Suppressing Background Motion
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Figs. 14 and 15 assume that the beginning of the sampling interval
is synchronized with the passage of the target across the detector
window. such that during the sampling interval the detector
collects the maximum possible amount of the target energy.

Fig. 14 and 15 show the effectiveness of the optimum
third-order recursive filters (curves labeled TR at two ends) in
suppressing background motion effects on peak SNR, respectively.
For a sampling interval of 1 sec. Fig. 14 shows that for lower drift
rates (<4.9 u rad/sec), the third-order recursive filter optimized for
the same drift rates have more than a factor of 2 SNR advantage
over equivalent third-difference filter: at higher drift rates the SNR
improvement is less dramatic as the effect of non-optimum
sampling/integration interval affects the performance of the recur-
sive filters more than the performance of third- and fourth-
difference filters. Among the first- through the fourth-order
fixed-difference filters. for all ranges of drift rates and sampling
intervals, the performance of the first-difference filter is decidedly
the worst. Sampling time interval has a significant influence on the
relative performance of various orders of fixed-difference filters.
When the sampling frequency is | Bz (Fig. 14), for lower drift rates
(<S5.0 urad/sec). the second-difference filter is superior to the
third-difference filter, which is in turn superior to the fourth-
difference filter. For the range of drift rates considered for this
study (maximum 7.5 urad/sec). there is no advantage in using
fourth-difference filter over third-difference filter for the over-
sampled case, but as shown in Fig. 15 and Table S, for higher drift
rates, such may not be the case. Again, for the range of low
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Table 5. Summary of Results Peak Quiput SNR Gain Calculations

Col Sampling/ 86 k SN/
Torget Deell intsgration Drife ] '. SNR ] Paak SNR ‘P-I(SNR '
Case Velocity Time Time Rate Fixed-Difference Filters Ideal Optimum Recursive
Number Ve im/s) (ssc) {sec) Vg lurh) First Second Thied Fourth Filter Third-Order High Vp,
Cose 11 Cose 21 Case 31 Case 4-1 Case 51 Case 6-1 Case 7-1
A 200 2 1 13 0.50 1.68 2.27 1.862 348 349 349
8 200 2 1 6.1 0.66 2.14 244 1.902 437 3.36 3.80
¢ 200 2 1 49 091 256 2510 1912 5.03 in 388
0 200 2 1 36 1.33 P Y 2528 1914 5.94 5.15 3.906
3 200 2 1 24 2.25 286 2531 1915 6.89 §.92 3910
f 200 2 1 12 in 281 2.531 1915 1.19 6.25 3911
Case 1-2 Case 2-2 Case 3-2 Case 42 Case 5-2 Case 6-2 Case 72
A 200 2 2 73 0.27 1.07 1.50 214 n 3.16 n
8 200 2 2 6.1 0.36 1.58 2.33 339 496 433 397
C 200 2 2 49 0.50 251 3.70 5.04 5.76 5.34 4488
D 200 2 2 36 0.74 4.13 513 5.98 6.67 6.15 4514
3 200 2 2 24 137 6.38 5.72 6.16 758 698 4518
F 200 2 2 12 344 713 6.76 6.17 8.42 1.51 451

background dritft considered. for the oversampled case, the peak
SNR performances of the third- and fourth-ditterence filters appear
almost unchanged (Fig. 14). as the shot noise is unaffected by the
drift rate. and most of the low Vi clutter has been eliminated by
high difference filters. The cross-over of the third-order recursive
filter maximum SNR with that of the ideal filter in Fig. 14 is
caused by computational approximation in the computer simula-
tion. From a physical standpoint the performance of all filters,
including the optimum recursive, sutfers with increasing back-
ground dnift rates.

When the negative effects of oversampling are eliminated by
using a sampling/integration interval equal to the cell dwell time,
the superiority ol the optimum recursive filter over the various
orders of fixed-ditference filters is more clearly demonstrated. This
is because a recursive filter can compensate for improper target
integration while a fixed-difference filter can not. While a
second-difference filter may yield higher peak SNR’s (in Fig. 15
than third- and fourth-difference filters for low (<2.5 urad/sec)
drift rates, for higher (>2.5 prad/sec) drift rates, the higher the
difference filter order. the better is the SNR performance. This is
because lower order difference filters degrade the target less for
low background drift rates. For higher drift rates (> 7.0 urad/sec),
the third-order recursive filters have almost a factor of 2 SNR over
the third-difference filter. At lower drift rates. the improvement is
less noticeable because shot noise dominates the total noise input.
Note that the optimum recursive filter SNR performance is very
close (within 107%) to that of the theoretically “ideal™ filter for
drift rates shown in Fig. 15. In Fig. 15, the first-difference filter
has peak SNR's of less than | for drift rates higher than
3.1 wrad/sec. It is not surprising that recent systems have not used
first-difference filtering.

Since it may not be practical to adjust the filter coefficients
adaptively for each drift rate for an optimum recursive filter, it is
of interest to study the behavior of a recursive filter optimized for
a particular drift rate (usually the highest expected drift rate) for
other drift rate conditions. Such behavior is highlighted in Table §
for a third-order recursive filter with constant filter coefficients
optimized for a single drift rate of 7.3 prad/sec.

Comparing the last two columns of Table 5, we see that much
of the filter performance is sacrificed at lower drift rates, However,
the latter filter still gives higher peak SNR over the range of drift
rates than the first- through the fourth-difference filters. When the
effect of non-optimum (1-sec) sampling/integration time is elimi-
nated from the problem conditions, we again find by comparing the
last two columns of Table § that for lower drift rates (<3.5 prad/
sec). the filter optimized for 7.3 urad/sec has a worse SNR than
the fixeddifference filters except the first-order. However, as the
drift rates approach the drift rate for which the filter was
optimized. it performs better than any of the fixed-difference
filters.

The results presented here show that: (1) the use of optimized
recursive filters instead of fixed-differencing filters can result in
significant improvements in SNR performance especially at higher
(>5.0 yrad/sec) drift rates: (2) in addition, by oversampling in
time, dropouts due to phase mismatch between the target and
sample time can be lessened: (3) for the first-, second-. and
third-difference filters, SNR performance is slightly improved by
oversampling (sampling interval 1/2 cell dwell time) at the highest
drift rates (6.0 and 7.3 u rad/sec) but significant SNR degradation
results at the lower drift rates: (4) overall performance is degraded
by not using an optimum target signal integration time and
sampling interval, but that a recursive filter can be adjusted to
compensate to a large extent (filter coefficients can be set in a
third-order recursive filter so that both differencing at low
frequencies to attenuate structured background and integration at
high frequency to attenuate random system and detector shot
noise can be provided): and (5) of the six different realizable filters
considered in the study, the best SNR performance was achieved
by using a third-order optimum recursive digital filter and
oversampling for high background drift rates and sampling at the
target cell dwell time for lower drift rates.

IV. Spatial Filtering Considerations

Another electro-optical system parameter that we may con-
sider varying so as to improve the SNR performance is the optical
blur circle size. To gain insight into the performance consequences
associated with this parameter, we have posed and investigated the
following problem:

For the detection of moving targets immersed in a drifting
structured background with a staring mosaic type sensor.
derive an ideal cascaded pair of linear spatial and temporal
filters.

For this problem we shall assume the system model given in
Fig. 16. In addition. we shall assume the following:

1. The total input noise spectrum can be written as

NG g wt) = Npd x) + Ne(wg) + Nlwy)
= Np(&3x) + Ny(ewoy)

where N(&y.wy) is the spectrum of the total input noise,
Np(x) is the spectrum of the background spatial
structure, Nel(wy) is the spectrum of the background
temporal fluctuation. and Ng(wy) is the spectrum of
temporal random noise that is generated in the detector,
and Ny(w 1 is the total temporal noise.

[

The phase content of spectra can be ignored except for
the computation of cross spectral densities.
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Fig. 16. Model of the Cascade Spatial- Temporal Filter

-

3. The background is drifting with yelocity Vy, and the
target is drifting with velocity V[ such that for the
buckggoung_l. Ny=Vyp- C?x: and for the target or signal,
W=V wy

4. There is zero correlation between the inputs S(C:x).

Np(& ). and Ngtewy).

The ideal temporal filter, which will maximize at its output
the ratio of the maximum of the signal to the rms of the noise, or,
in other words, the SNR, can be written as

- -
S(v[ ° Jx) Hx(v] " ;x)
le(Vb ’ Jx) Hx(\—/’b ’ ax)l 2+ lNd(“’t)I2

Hiw) = (6)

Such a filter has the property that the greater the integrated output

spectrum _7:, Clwyp) dwy, the greater will be the output SNR. We
can thus define an optimization parameter P which we will want to
minimize as

oo

1
=) —
P=_1 Clwp) dwt D

Bt"causc the cross-spectra terms vanish, Equation 7 can be reduced
to

i le(Vb‘;x)lz |Hx(Vb~Z§x)|3
=\ ISV Sol7 [He(Vy- @2
| Ng (wp) |2 1

——3 dwp  (8)
IS(Vt":”x)I2 [Hy (Vi - wy)] 2

From this equation we observe that. compared to no spatial
filtering (Hy(&y) = 1), a spatial filter will improve the signal to
background structure by a factor of

LA IE
,Hx(Vb "_‘;x)l 2

and the signal to purely temporal noise by a factor of IHx(Vt ~:)x)|2
at each frequency.

Let Gylw ) be the gain in signal to background that will be
achieved by a spatial filter

[Hy(Vi - 5o |2

= s 9
le(Vb . ux)l 2

Gx(wt) =

To gain insight into the behavior of Gy(w ) let us consider the
following example. Let Ny(w ) =0 and let Hy(5Y) be the lowpass
filter of Fig. 17. Now let Hy(G¢) be the highpass filter of Fig. 18.

8

Log Magnitude

Log Frequency

Fig. 17. Illustration of the Signal-10-Background Enhancement Obtainable
From a Low-Pass Spatial Filter

Log Magnitude

Log Frequency

Fig. 18. Hy(()y) asa High-Pass Filter

It appears that the spatial filter will, as a lowpass filter, yicld a
gain in signal to background as a function of frequency for a target
faster than the background drift. A highpass spatial filter will tend
to degrade this performance.

Furthermore, as we decrease the resolution of a typical
optical system we should observe the following:

1. We can achieve a performance gain against background as
expressed in Equation 9. We also observe as shown in
Fig. 19 that the greatest gain will occur at the higher
frequencies.

(%)

We lose in performance against temporal noise by a
factor Gt(wt).

Gylwy) = Hy(Vy - Sy) (10)

Magnitude

Log Frequency

Fig. 19. A Typical Optical Low-Fass Filter

From our work we have observed that as we increase the blur
circle size we always lose SNR at the lower drift rates but we gaina
potential for improved SNR at higher drift rates. Another
observation is that as the blur circle is increased the breakeven
point for SNR versus blur circle size migrates to higher drift rates
so that for each drift rate there will be some single optimum blur
circle size depending on the drift rate. Another observation is that
as the blur circle is increased. temporal filters with sharper band
edge cutoffs are required to achieve ideal performance.
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To achieve such sharper band edge cutoff, as shown in the

previous section, one must use more generalized recursive filter
structures instead of just simple structures associated with dif-
ferencing filters.

V. Summary/Conclysions

Summarizing. the most critical problem in space-based staring-
mosaic-sensor surveiltance systems is that ideal staring operation
cannot be achieved with non-synchronous observer orbits looking
at carth backgrounds: background appears to drift everywhere in
the FOV except the stabilized center. The objectives of this study
have been threetold:

“

I'he

[

To characterize carth background drift versus orbit.

Compare eftectiveness of signal processing algorithms in
rejecting the background clutter noise.

Use of spatial filtering effects in suppressing background
clutter,

following were the most significant results of our study:
For fixed angular FOV:

4. Background drift in angular measure (arc-sec/sec)
decreases markedly with observer altitude (Fig. 4a).

b, Angular drift rate varies considerably with viewing
geometry. A factor of 2.5 to 1.5 increase results
(depending on orbit altitude) from increasing LOS
cenith angle (angle between LOS and local vertical
at LOS intersection with the ground) from 30 to
800 (Fig. 4b). Since range also increases with
increasing zenith angle. apparent linear drift on the
ground incteases even more.

¢.  Background drift in linear measure (meters/sec)
changes little with altitude (Fig. 6).

Assuming drift varies linearly with distance from FOV
center, average angular drift in a circular FOV is
two-thirds of the worst-case drift at the edge of the
FOV. Average drift at the periphery of a circular FOV js
approximately 707 of the maximum drift at one or
more corners of the circumscribed square FOV. For
tixed coverage on the ground, requiring smaller FOV for
higher observer altitude, linear drift (m/sec) and hence,
background clutter noise decreases with altitude: this
implies higher orbits should be favored for aircraft
detection.

One can obtain significantly better SNR performance
from an optimized recursive filter than from an
equivalent fixed-differencing filter, especially at higher
drift rates. For equal performance. FOV area for a
third-order recursive filter equals four times the FOV
area for a third-difference filter: the latter implying
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step-stare update rate of four times as much as for a
recursive filter (Fig. 14 and 15). Higher order filters are
quite effective in improving clutter noise rejection. In
one sample case, for higher drift rates, a third-order
recursive filter permitted only one-halt of the clutter
leakage of a third-differencing filter which in turn
permits about one-half of the clutter Jeakage of a
second-difference filter.

4.  While the performance of fixed-differencing filters is
severely degraded (if the sample rate is higher than the
target cell dwell time), recursive filters can be adjusted to
compensate for the non-optimum detector integration
time. In addition, by oversampling in time. dropouts due
to phase mismatch between the target and the sample
time can be minimized. Parameters can be set in a
third-order recursive filter so that both differencing at
low frequencies to attenuate structured background and
integration at high frequency to attenuate random
system and detector shot noise can be provided. To
summarize, we have shown that superior performance
can be achieved using an optimum recursive digital filter
(and oversampling in time for high background drift
rates and sampling at target cell dwell time for low drift
rates) than from a fixed differencing filter operated at
one sample per target cell dwell time.

5. A recursive filter that is optimum for a given background
drift rzte will exhibit somewhat higher SNR's than fixed
difference filters when the background drift rate is
actually lower than assumed (Table 5).

6. Peak signal to rms background clutter can be improved
by increasing the optical blur circle size and using a
temporal filter with a sharper band edge cutoff. How-
ever, as the blur circle is increased, peak signal to rms
shot and system noise will be decreased.
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